Continued airworthiness

SAFRAN Helicopter Engines – Jean-Luc THOUVENOT

Key messages

- Safran HE has structured the Continued Airworthiness according to EASA regulation and monitors frequently key figures / processes with Authority
 - Collect and analyze in-service events and out of operation events
 - Inform the Authority within 72h about all event potentially leading to unsafe conditions
 - Analyze the airworthiness impact <u>at engine level</u> of these events and inform the Authority all along the process
 - Propose to the Authority the mandatory corrective actions

Continued Aiworthiness process

 \rightarrow This process is managed by the airworthiness engineer

Continued Aiworthiness process – in service events

- Customer Support collects events occurring at operator's
- Events are sorted out to identify those with airworthiness impact: Incident Reports (IR) or Accident Report (AR)
- > AR and IR impact are issued and sent to EASA within 72h
 - Performed by corporate customer support under Airworthiness office delegation
- Investigation launched for each event in order to:
 - Identify the origin of the event
 - Assess the associated airworthiness impact

Continued Aiworthiness process - other events

- Any technical events detected in Design, Manufacturing, Testing, assembly, repair,...
- That could potentially affect airworthiness of the fleet
- Those events are reported to the Airworthiness Office via a 'CIREN' (Internal Report relative to an airworthiness event)
- > After evaluation, the Airworthiness Engineer:
 - Either closes the 'CIREN' if no/low airworthiness issue is identified
 - Issues a 'CREN' (Airworthiness Event Report) to EASA if potential airworthiness issue is identified

Continued Airworthiness process- Summary

Continued Airworthiness process – Decision Matrix

Criticality	Required Action
I	Immediate action before the next flight
I	Action in X days/weeks lead time
III	Necessary action to reduce the risk
IV	Acceptable risk

Does not include application of CM PIFS-011

EASA Certification Memo CM–PIFS-011

- Specific to helicopter operation
- Based on the reality that some Minor engine failures can create an aircraft Unsafe situation
- Safran Helicopter Engines implemented a process that meets EASA expectations, with a close coordination with airframer:
 - Cooperate with the airframer to investigate/allocate the cause and assess the risk on the fleet
 - Assess the risk <u>at helicopter level</u> in operational conditions
 - Define a reaction time, based on this risk
 - Define associated action plan

Some challenges to perform continued airworthiness

- Getting operators declaration of in-service events, and subsequent information
- Getting hardware returned to factory for investigation
- Setting contributions from equipment suppliers
- Knowing the detailed fleet operating hours in order to perform statistic evaluation
- Getting actual experience of hardware from repair shops (how it wears/fails)
- Understanding the failure scenario, and reasons for failing
- Implementing fixes quick enough worldwide when a real safety issue is confirmed
- Coordination with airframer to quote the risk

LAST SLIDE

Jean-Luc THOUVENOT VP Airworthines Jean-luc.thouvenot@safrangroup.com

This project is funded by the European Union